Site logo with text

電話お問い合わせ:平日10時 ~18時

050-1808-9513

お問い合わせ 資料ダウンロード

電話お問い合わせ:平日10時 ~18時

050-1808-9513 ログイン

ご希望の設備/ラボが 見つからない場合は、 こちらからご要望を お聞かせください

Pic lp eyecatch inquiry

検索結果:機器訪問利用カテゴリ「定量」(17件)

    • Ic pin 東京都
    • 機器訪問利用

    GC(ガスクロマトグラフィー)

    Thumb f156695e d66d 4354 b348 b5ad03b231ad

    気体および液体の成分分析を行います。

    可能な実験例

    ○食品のにおい成分の分析

    食品の香気成分として炭化水素類、アルコール類、エステル類などがあり、標準試料、検量線を用いて分析することによって、定性、定量ができます。

    ○分離膜の透過実験

    透過側と供給側の液の組成を測定することによって分離係数を算出することができます。

    ○樹脂の解析

    熱分解させた樹脂を測定することで骨格構造、末端基情報を得ることができます。

    ○高分子材料に含まれる添加成分の分析

    溶媒抽出などの前処理で得られた抽出液を分析し、酸化防止剤などの添加剤や残存溶媒の定性、定量ができます。


    ※組織により上記実験ができない場合がございます。

    • Ic pin 東京都
    • 機器訪問利用

    蛍光X線分析装置(XRF)

    Thumb 8748f335 982f 49a6 b6ce 34a3fd84beb7

    X線を試料に照射した時に発生する蛍光X線のエネルギーや強度から、物質の成分元素や構成比率を分析できる装置です。

    可能な実験例

    ○合金めっき膜圧の測定

    合金めっきをした試料材料を測定し各成分のスペクトルを分析することによって密度、付着量、膜厚を求めることができます。

    ○基板の電極部周辺の面分析

    基板の電極部分を測定し元素マッピングすることによって金属の分布を知ることができます。

    ○岩石の成分分析

    岩石粉体状に砕き測定することで岩石に含まれる成分の種類と量などを分析することができます

    ○廃液の成分分析

    廃液を液体のまま測定することによって、液中に含まれる成分や量などを分析することができます。


    ※組織により上記実験ができない場合がございます。

    • Ic pin 茨城県
    • 機器訪問利用

    紫外可視分光光度計(UV-Vis)

    Thumb 72cce012 74c2 4120 b17f 3221f65e7d43

    紫外領域と可視領域の光の領域を用いて溶液の吸収スペクトルを測定し定量分析います。

    可能な実験例

    ◯物質の透過率の測定

    物質の透過を測定し、物質の量(濃度や膜厚)から透過率を算出することができます。

    ◯物質の反射率の測定

    試料ステージに反射測定用ユニットを設置することで、物質の反射率を測定することができます。

    ◯物質の吸光度、バンドギャップの算出

    物質の透過率、反射率から、物質の特定波長における吸光度が算出されます(透過測定が振り切っていない場合のみ)。またピークの立ち上がり波長からバンドギャップが算出されます。

    ◯物質のキャリアの確認

    物質がキャリアを持つ場合には、物質の透過スペクトルにおける概ね700nmから長波長側に吸収が見られます。

    ◯特定物質の定性、定量分析

    測定対象物質があらかじめわかっている場合は、吸収ピーク波長のシフトや濃度といった情報が得られます。

    〇その他

    偏光子をもちいることで、物質の光応答性に関する異方性の情報が得られます。配向結晶などに対して計測することで、結晶軸による光応答性の違いがわかります。

    ※組織により上記実験ができない場合がございます。

    • Ic pin 茨城県
    • 機器訪問利用

    固体NMR(核磁気共鳴)装置

    Thumb 14a6be79 1ffd 4334 b649 8f2eab6603a9

    核磁気共鳴法(NMR)は、磁場中での原子核の共鳴現象を利用して、原子レベルの化学構造や分子運動性を解析できる手法です。 試料を溶媒に溶かすことなく測定するため、固体状態そのままの構造情報を得られます。

    可能な実験例

    〇多孔質物質の構造解析

    29Siを測定することで、構造を推定することができます。

    〇ペプチド・ポリペプチドの構造解析

    13Cを測定し、構造を推定することができます。

    〇ダイヤモンドライクカーボン(DLC)の評価

    13Cについてsp3とsp2の割合を解析することで、DLCの評価を行うことができます。

    〇高分子材料における結晶化度の定量

    DD/MAS 法にて得たスペクトルを用いることで、結晶相の炭素、非晶相の炭素の割合を比較することで、結晶化度を測定することができます。


    ※組織により上記実験ができない場合がございます。

    • Ic pin 茨城県
    • 機器訪問利用

    EDX(SEM-EDX)

    Thumb 740f1525 d2e8 4d03 8b44 09510a72a7d5

    SEM(走査型電子顕微鏡)にEDX(エネルギー分散型X線分析装置)を装備しており、観察領域における組成分析・元素マッピングができます。

    可能な実験例

    ○部品の破損原因の特定

    劣化して破損してしまった部品を表面分析することにより、本来部品に含まれていない成分などの有無を調べ、外的要因がないかどうかを判断することができます。

    ○金属中の変色調査

    変色してしまった金属製品を測定しマッピング分析をすることにより、変色箇所に含まれる成分を特定することができます。

    ○無機物質の大まかな材料判定

    未知の無機物質を測定し、標準試料のデータと照らし合わせることで無機物質の大まかな材料判定をすることができます。

    ○電子基板上の微小異物の分析

    電子基板上に発生した微小異物の元素分析をすることにより、有機物か無機物かを判別することができます。


    ※組織により上記実験ができない場合がございます。

    • Ic pin 茨城県
    • 機器訪問利用

    EPMA(電子線マイクロアナライザー装置)

    Thumb e04d01e8 eaf0 429f 99d3 42d5209dc536

    電子プローブマイクロアナライザ(EPMA)は、物質表面に電子線を照射して、そこから発生する特性X線を計測し、試料を構成する元素とその量を測定することができます。

    可能な実験例

    ◯物質の構成元素の定量分析

    物質を構成する元素の強度比から、定量分析が可能です。電子顕微鏡観察面での分析であり、試料全体の定量分析ではないことに注意が必要です。また標準試料を用いることによって、定量の精度が向上します。

    ◯物質の構成元素の定性分析

    検出したX線の波長からどのような元素が含まれているかわかり、未知物質の組成推定に用いることができます。検出限界は 程度で、0.001質量%(重元素の場合)で、微量成分の分析には向きません。

    ◯相分離構造のマッピング分析

    観察面の各位置から検出された特性X線波長を各元素ごとに色分けすることにより、元素マッピング分析が可能です。合金、磁石、鉱石などの相分離構造観察などに活用されます。

    ◯デバイスの縦方向組成分析

    半導体などのデバイス断面を観察することで、各層を構成する元素組成がわかります。デバイス構成によっては層膜厚が分解能以下であるため、各層の組成ずれや層間の元素拡散の度合いが定性的にわかります。

    ◯汚染、不純物の組成特定

    製品の不良解析や原因推定の際に有効な手段です。例えば不良があった半導体製品の表面に意図せず付着しているドロップレットの構造、組成が分かると、原因特定に役立ちます。


    ※組織により上記実験ができない場合がございます。

    • Ic pin 茨城県
    • 機器訪問利用

    X線回折装置(XRD)

    Thumb eabcbe0c abc5 4c1b 8c1e 960309c30d58

    化合物の同定・定量分析や、結晶構造の解析を行うことができます。

    可能な実験例

    試料の定性・定量分析・相同定

    粉末X線回折法により得られた回折パターンを、既知物質の回折パターンと比較することで試料の定性・定量分析や相同定をすることができます。

    格子定数・イオン半径・原子座標位置の算出

    粉末X線回折法により得られた回折パターンのフィッテングを行うことで、試料の格子定数・イオン半径・原子座標位置を算出することができます。

    分子の三次元構造の決定

    単結晶X線回折法により得られた回折パターンから、分子の三次元構造を決定することができます。

    試料の格子歪・残留応力の測定

    X線回折法により得られた回折パターンから、ピーク位置のずれや幅を測定することで試料の格子歪・残留応力の算出をすることができます。

    結晶方位の測定

    試料に照射するX線の角度を変化させながら、任意の結晶方位の回折ピークを測定することで試料の結晶方位を測定することができます。

    結晶配向性の測定

    特定のピーク位置における回折強度分布を測定することで、結晶の配向性を測定することができます。


    ※組織により上記実験ができない場合がございます。

ご希望の設備/ラボが 見つからない場合は、 こちらからご要望を お聞かせください

Pic lp eyecatch inquiry