有機化合物の構造解析、材料の表面・バルク分析、マイクロ粒子の分析
赤外吸収分光計(IR)はサンプルに赤外線を照射し、それによるサンプルの物質がどの周波数(通常は波数)の赤外線を吸収しているかを測定する装置です。分子や原子はそれぞれ固有の振動をしていますが、波長(スペクトル上では波数)を連続的に変化させながら赤外線(infrared : IR)を照射すれば、分子の固有振動と同じ周波数のIRが吸収され、分子の構造に応じたスペクトルが得られるはずです。これにより、サンプルが予測できるものであれば、既知のスペクトルと比較して、同定、確認ができますし、また、多重結合、官能基、シス-トランス異性、水素結合などの分子構造に関する知見を得ることもできます。
なお、実際の測定原理は干渉計を利用したフーリエ分光法を用いていて、より高い波数の再現性を持っています。現在はこれらのFT-IRが一般的になっています。検出器は、焦電型のDTGS検出器と、半導体型のMCT検出器を備え、高感度分析にも対応しています。
試料は、サンプルセルを換えることにより、固体、液体の状態で測定できます。通常、固体はサンプルをKBrに分散させるKBr法、液体は原液のまま測定する液膜法と溶媒に溶かす溶液法を用います。また、1回反射ATRユニットや高感度反射ユニットを用いることで固体、液体、フィルム状など、様々な状態の試料にも対応できます。その他、顕微IR用の顕微鏡アタッチメントを比較的簡単に据え付けることができ、微少領域の測定をすることが可能です。
導電性のない電子顕微鏡試料のチャージアップ防止のためのコーティング、親水化処理、イオンエッチング
導電性のない試料を電子顕微鏡で観察する際に、何もコーティングしていないと望ましい像が得られなくなる場合があります。(チャージアップ)
この装置は、試料表面に白金などの金属をスパッタリングによってコートすることによりチャージアップを防ぐことを可能にします。
また、試料を乗せる基板の親水化処理、イオンエッチングも行うことができます。
透過試料の蛍光観察
共焦点レーザー顕微鏡は、レーザースキャンによって試料の蛍光像を測定し、高倍率時に特に問題になる試料の厚さによる焦点のずれがない像が得られます。また、焦点を変化させて複数枚の像を測定し、PC上で再構成することで立体的な像を得ることもできます。本装置は正立型顕微鏡のため、主に蛍光染色されたスライドガラス上の試料等の測定に使用可能です。
透過試料の蛍光観察
粉末、バルク、薄膜の結晶構造解析
本装置は、全自動水平型多目的X線回折装置(XRD)です。
粉末、バルク、薄膜など多様なニーズに対応し、ガイダンス機能を持ったアプリケーションにより最適な測定条件で分析が行えます。また専用の解析アプリケーションにより定性分析、定量分析、結晶化度、配向度、結晶子サイズ分布、膜厚、残留応力など様々な解析が可能です。
・粉末、バルクの定性分析、定量分析(2θ/θ測定)
・薄膜試料の定性分析(2θ(斜入射)測定、インプレーン測定)
・結晶方位分布や配向性の分析(極点測定、ロッキングカーブ測定)
・結晶化度の分析(2θ/θ測定)
・粉末、バルクの高温での相変態、格子定数変化(温度制御2θ/θ測定)
・加工材料の残留応力分析
・単結晶基板とエピタキシャル薄膜の結晶方位関係、格子定数の解析(逆格子マップ測定)
元素分析 (溶液、無機元素)
霧状にした試料を、円筒状のプラズマに導入することで、原子固有の波長の発光(スペクトル線)から元素の定性・定量をする分析法です。
液体試料の元素を測定する類似の装置に原子吸光法、ICP-MSがあり、特徴は以下の通りです。
・原子吸光法:ルーチン的な操作では扱いやすい。ppbオーダー。元素に応じた光源が必要。
・ICP-AES (ICP-OES):主成分の測定に対して比較的万能。ppbオーダー。
・ICP-MS:微量成分の測定向き。pptオーダー。ppmオーダーの高濃度マトリクスは不可。
ICP-AESは、分光のために回折格子を使用していますが、それらを駆動させて測定するシーケンシャルタイプと、駆動させずに一度に検出するマルチタイプがあります。前者は分解能と感度が良いですが、測定時間が長いという欠点があります。本装置は多元素の同時分析に向いているマルチタイプ装置となっています。
干渉量を自動診断できるデータベースとソフトウェアを備えるため、多元素干渉試料でも初心者が比較的簡単に測定することができます